LLMConfigsResource
LLMConfigsResource ¶
LLMConfigsResource(client: Client)
Bases: BaseResource
create ¶
create(name: str, llm_model_name: str, api_key: str, description: str = '', llm_base_url: str | None = None, api_version: str | None = None, max_connections: int = 10, max_retries: int | None = None, timeout: int | None = None, system_message: str | None = None, max_tokens: int | None = None, top_p: float | None = None, temperature: float | None = None, best_of: int | None = None, top_k: int | None = None, logprobs: bool | None = None, top_logprobs: int | None = None, reasoning_effort: str | None = None, inference_type: InferenceType = OPENAI) -> LLMConfig
Create a new LLM configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
Name for the LLM config. |
required |
llm_model_name
|
str
|
Name of the LLM model. |
required |
api_key
|
str
|
API key for the LLM service. |
required |
description
|
str
|
Optional description for the LLM config. |
''
|
llm_base_url
|
str | None
|
Optional base URL for the LLM service. |
None
|
api_version
|
str | None
|
Optional API version. |
None
|
max_connections
|
int
|
Maximum number of concurrent connections to the LLM provider. |
10
|
max_retries
|
int | None
|
Optional maximum number of retries. |
None
|
timeout
|
int | None
|
Optional timeout in seconds. |
None
|
system_message
|
str | None
|
Optional system message for the LLM. |
None
|
max_tokens
|
int | None
|
Optional maximum tokens to generate. |
None
|
top_p
|
float | None
|
Optional nucleus sampling parameter. |
None
|
temperature
|
float | None
|
Optional temperature parameter. |
None
|
best_of
|
int | None
|
Optional number of completions to generate. |
None
|
top_k
|
int | None
|
Optional top-k sampling parameter. |
None
|
logprobs
|
bool | None
|
Optional flag to return log probabilities. |
None
|
top_logprobs
|
int | None
|
Optional number of top log probabilities to return. |
None
|
reasoning_effort
|
str | None
|
Optional reasoning effort parameter for o-series models. |
None
|
inference_type
|
InferenceType
|
Type of Inference Provider to use. |
OPENAI
|
Returns:
Type | Description |
---|---|
LLMConfig
|
The created LLM configuration. |
Raises:
Type | Description |
---|---|
HTTPStatusError
|
If an LLM config with the same name already exists. |
delete ¶
Deletes an LLM configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
llm_config
|
LLMConfig
|
The LLM configuration to delete. |
required |
Raises:
Type | Description |
---|---|
HTTPStatusError
|
If the LLM config doesn't exist or belongs to a different project. |
get ¶
Get an LLM config by name.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
Name of the LLM config. |
required |
Returns:
Type | Description |
---|---|
LLMConfig
|
The requested LLM config. |
Raises:
Type | Description |
---|---|
ValueError
|
If no LLM config is found with the given name. |
get_or_create ¶
get_or_create(name: str, llm_model_name: str, api_key: str, description: str = '', llm_base_url: str | None = None, api_version: str | None = None, max_connections: int = 10, max_retries: int | None = None, timeout: int | None = None, system_message: str | None = None, max_tokens: int | None = None, top_p: float | None = None, temperature: float | None = None, best_of: int | None = None, top_k: int | None = None, logprobs: bool | None = None, top_logprobs: int | None = None, reasoning_effort: str | None = None, inference_type: InferenceType = OPENAI) -> tuple[LLMConfig, bool]
Get an existing LLM config or create a new one.
The existence check is only based on the name parameter - if an LLM config with the given name exists, it will be returned regardless of the other parameters. If no config with that name exists, a new one will be created using all provided parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
Name for the LLM config. |
required |
llm_model_name
|
str
|
Name of the LLM model. |
required |
api_key
|
str
|
API key for the LLM service. |
required |
description
|
str
|
Optional description for the LLM config. |
''
|
llm_base_url
|
str | None
|
Optional base URL for the LLM service. |
None
|
api_version
|
str | None
|
Optional API version. |
None
|
max_connections
|
int
|
Maximum number of concurrent connections to the LLM provider. |
10
|
max_retries
|
int | None
|
Optional maximum number of retries. |
None
|
timeout
|
int | None
|
Optional timeout in seconds. |
None
|
system_message
|
str | None
|
Optional system message for the LLM. |
None
|
max_tokens
|
int | None
|
Optional maximum tokens to generate. |
None
|
top_p
|
float | None
|
Optional nucleus sampling parameter. |
None
|
temperature
|
float | None
|
Optional temperature parameter. |
None
|
best_of
|
int | None
|
Optional number of completions to generate. |
None
|
top_k
|
int | None
|
Optional top-k sampling parameter. |
None
|
logprobs
|
bool | None
|
Optional flag to return log probabilities. |
None
|
top_logprobs
|
int | None
|
Optional number of top log probabilities to return. |
None
|
reasoning_effort
|
str | None
|
Optional reasoning effort parameter for o-series models. |
None
|
inference_type
|
InferenceType
|
Type of Inference Provider to use. |
OPENAI
|
Returns:
Type | Description |
---|---|
tuple[LLMConfig, bool]
|
tuple[LLMConfig, bool]: A tuple containing: - The LLM configuration - Boolean indicating if a new config was created (True) or existing one returned (False) |